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Diffusive boundary layers in the free-surface excitable medium spiral
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Spiral waves are a ubiquitous feature of the nonequilibrium dynamics of a great variety of excitable systems.
In the limit of a large separation in time scale between fast excitation and slow recovery, one can reduce the
spiral problem to one involving the motion of a free surface separating the excited and quiescent phases. In this
work, we study the free-surface problem in the limit of small diffusivity for the slow field variable. Specifi-
cally, we show that a previously found spiral solution in the diffusionless limit can be extended to finite
diffusivity, without significant alteration. This extension involves the creation of a variety of boundary layers
which cure all the undesirable singularities of the aforementioned solution. The implications of our results for
the study of spiral stability are briefly discuss¢81063-651X97)50604-0

PACS numbes): 82.20.Mj, 82.20.Wt, 87.96:y

Understanding the behavior of spiral waves in excitablewhereu is a positive constarand where for simplicity we
media remains an important and challenging probldh  have assumed equal values of the linear coefficient in the
From the perspective of numerical simulation, two compo-two state§ g,, g_ are positive, negative constants and
nent reaction-diffusion mode]2,3] have been shown to cap- v .. refers to the field in ther,— regions, respectively. The
ture the important features of spiral patterns, in particularfield obeys the boundary conditions at the interfatE
the transition from rigid rotation to meandering and the phe-
nomenology of the nonlinear meandering stgtes]. More Cht K= —Vint, (2
recently, simulation$6], and a numerical stability analysis
[7] based on the free boundary linji8] (see below have
confirmed that the finite thickness of the frqaeparating the
excited region from the quiescent grie not crucial for the
meandering behavior. It is therefore of interest to pursue angp
lytical techniques(which make use of this free boundary

where c,, is the normal velocityx the curvature, and the
value ofv (as well as its normal derivatiyds continuous
across the interface.

This system of equations is not rigorously derivable from
e original reaction diffusion system

limit) in the hope of gaining a more fundamental understand- f(u,v)

ing of the nature of this instability. gu/ gt =V2u+ Pt (©)
This work reports progress towards the aforementioned

goal of having an analytic theory of spiral waves. Specifi- dvldt =DV +g(u,v). (4)

cally, we revisit an approach due to Pelce and Binvho
derived a spiral solution in the case of zero diffusion for theThe reason for this is that replacing the “propagator” field
“controller” variable. Their solution exhibits singular be- equation foru(x,t) by an interfacial boundary condition is
havior near the spiral “tip”(for example, the front curvature only valid asymptotically ag—0. The coefficienfu of the
has a discontinuous derivative across the tip poivitich  linear term in Eq(1) is formally small, of order*. Hence,
raises gquestions regarding the validity of the solution and tave cannot rigorously keep this linear term without keeping
date has precluded a full stability analysis. Here, we shovadditional terms of the same order as well. As we have al-
how the inclusion of small but finite diffusivity provides, via ready mentioned, however, simulations show that Egjs.
the introduction of boundary layers, for a regularization ofand(2) do capture the spiral phenomenology of interest, at
the singular behaviors. This therefore confirms the physicaleast for finite diffusivityD . Furthermore, an exact numerical
validity of their construction. The implications of our results steady-state solutiofil2] and subsequent stability analysis
for a (future) calculation of spiral stability are discussed at[7] directly supports this conclusion. On the other hand, re-
the end. sults obtained by dropping the linear term and working at
The free boundary approach starts from the equationsmallD seem, at present, to be rather unphysidal7]; this
coupling a concentration field(x,t) to an interface between IS presumably due to the need to have the spiral tip remain a
an excited state of the mediuft) and the quiescent state finite distance away from the origin, which occurs at small
(—). In so-called “Fife"-scaled unit§wherein lengths, time D only if u is finite. We will therefore adopt Eq¢l), (2) as
and thev field have been rescaled to bring the eikonal equaour fundamental model and proceed to consider the small

tion (2) into the simple form shown—see Ré¢1.0]], D limit.
This free boundary problem witD =0 was first tackled

by Pelce and Suf9]. If one assumes a uniformly rotating
.1t =g.— puv.+DV?, (1)  field v(x,t)—v(r,6— wt) one obtains
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6.0 ‘ | =ay\r—rg, for some positivew. This condition allows for
the determination of the rotation frequeney It is easy to
check that the field value takes the valug_ at the tip and
0,(r) for all r<r,.

This solution has several unattractive features. Since the
20 ) interface position®s , vary asr—r,

YRN dular ~ 1\r—rg @

Y
j for all  whenr is close to but above the tip radiug. Also,

] dvld0 has a finite jump discontinuity at=ry, 6=0, so that
the derivative ofv along the interface has a jump disconti-
nuity at the tip where the front and back meet; this leads via

Gf(r) the relation(2) to a similar jump for the derivative of the
\, curvature. In addition, the normal derivativewhas a finite
-6.0_60 _2'.0 2‘_0 5.0 jump discontinuity across the interface. These difficulties
' x have had the practical effect of making it impossible to do a
full stability analysis of the spiral solutiorl4] and, in gen-
FIG. 1. A typical spiral, withrg, 6¢(r), 6,(r) indicated. eral, raise questions concerning whether the introduction of
finite diffusivity dramatically alters the conclusions one de-
—w(dv+1960) =g+— uv. (5)  rives via this construction. We now show that, in fact, finite
diffusivity smoothes out this singularities without making
This can be solved by imposing the matching conditionsany quantitatively significant change in the interface shape
v (0r)=v_(6;) and v, (6,)=v_(27+6,) where 6:(r)  and selected rotation frequency.
and d,(r) are the positions of the interface from quiescentto To proceed, we use an integral equation formulation of
excited and back to quiescent, as a function of the radius the problem[8]. The field v—Q. obeys a homogeneous,
(see Fig. 1 Defining@=w/u, §.=g. /u, the solution can linear field equation with a fixed discontinuity across the
be written as interface. Following standard manipulations, we can, there-
fore, expresw in the rotating frame as

va(r,0)=Gg.+A.(r)e’®,

-~ _ o~ PR or’ .
where v:(r,a)zgi+(g+—g_)DJ ds’(nﬂV’G—Fn;G ,
_ _ (e* ﬁf/E_efab/E) (8)
A_(N=(G,-7.) . | e .
1—e™® whereG is the Green’s function for the equation

A (r)=A_(r)—(g,—g)e """ —5(f—f')5(0—0’)_

N J
(DV2+w&—0—,u,)G(r,0;r’,0’)= =
This can then be substituted into the “eikonal” equation 9
(2) to find the interfaces6¢(r),0,(r). Near the tip
(=0, r=rg), smoothness requires — 6,(r)=6¢(r) An explicit representation o& which will be used below is

4 _(r2 12 _ ’ _ 4
t dt )exp< (rée+r 2rr'cog 0— 0’ + w(t t)])—,u(t—t’) . (10

G(r,e;r’,e’)zf AD(—1)

7004’7TD(t_t,

The integral in Eq.8) is over the entire interface with ar- pletely free from singularities but differs from the Pelce-Sun
clength variables’ andn’ is the unit normal which points fi€ld solution only by terms which are small in the small

outward from the excited regiom; is the component of Let us first focus on some point away from either the
in the direction of the§’ vector. For a given interface, interface orr=r,. In this region, we will show how our
this construction gives a field which obeys the field equatiorformulation reproduces the known results of Pelce and Sun.
and the continuity condition; a full solution can then be Since G will never be singular, the’-V'G in Eq. (8) is
found in principle by substituting the field value at the grder D and can be neglected. The integfégds’ can be
interface into the eikonal condition and iterating the interfacereplaced by+dr’ (for front and back, respectivelyNow,
shape until the equation is satisfied. What we will dothe integrals over’ [in Eq. (8)] andt’ (in the definition of
instead is evaluate this integral for the Pelce-8®8 inter-  G) are dominated by the saddle point contributions coming
face obtained ab=0. We will show that this field is com- from
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r’=r+O(\/5) with
t/=t+(6—6'—27n)/w+0O(\D). . 07T
, F(o)=2
If 6>6', n runs from 1 to; otherwisen goes from 0 to n Jo JarD(27n—0)/w
«. Doing the Gaussian integrals around these saddle points (24T 2T
leads after some algebra to _ ~
X exp 22m=0)w +(60—2mn)/w|. (15

U+:g+_(§+_§)<2 expl 60— 6;—2mn)/w . _ _
n F can be expressed in terms of the parabolic cylinder func-

tion [15] D, for index v=—23/2

— > expl6— Hb—ZWn)/E) (11)
n
~ §+ —5— d 5n
where then values in each sum obey the aforementioned U-(6)=0-+ 2 Dmﬁ En: ;MGXF(M%/Z)
rule. In the excited region, for examplé,> 6> 6,, yielding
°° X p(_?z) Do ”/JE)} (16)
—~ - eXp < 7. n
0)=T.—(3.-T )e%e| g /B g-2mie 46,
v (0)=9,~(G:-7) P

o

—e /B g2/
n=1

with 8,=2(27n— 6)/ w. This structure represents a bound-
(12 ary layer of (minimum) width (2D|6|/w)*2 For negative
T, the parabolic cylinder function decays as a Gaussian and
v_(0) approacheg_ ; for large positiver, D grows and
cancels the exponential factor, leading to the expected be-

with a similar expression obtainable for (6). Doing the
sums, we directly recover the result of E&) above. For

: AN o~ 1/4__ _
r<ry, there are no saddle points and the integral is exponeriaviorv—(6) —g_~r D™~ \r—r,. Note that the change
tially small. in the field itself is negligible as it vanishes in the sniall

We now wish to understand the departure from the Pelceimit as D** even though the derivative is of order */*
Sun solution due to finite diffusivity. As we have seen, there2Nd approaches infinity. . _
are a number of different regions where the Pelce-Sun solu- S0. We have shown how integrating over the Pelce-Sun
tion breaks downs and exhibits singular behavior. Theséterface with the finited Green's function leads to a regu-
breakdowns are all cured by boundary layers whose widtf@rization of the infinite slope discontinuity at=ro, without
vanishes withD. Interestingly enough, as we shall see, themodifying the field. In fact, this lack of field modification is

scaling of the boundary-layer width differs in each region.true everywhere including the interface. This follows from
We first examine the region=r, but still away from the the fact that we have already shown that our field construc-

interface, i.e.,d is not close to 0. We saw in Eq8) that tion agrees with the PS field everywhere that is a distance

du/dr was singular in this region. Examining our integral O(1) away from the interface and the PS fields are continu-
representation fos we see that the saddle point contribution ous across the interface. Field derivatives near the interfaces,

from thet’ integration is unchanged; however, the GaussiarP" the Oth?f hgnd,. are sign!ficantly.modified due to the pres-
integral withr’~r +0(yD) cannot be blithely extended to ence of diffusion-induced interfacial boundary layers. We

infinity since the lower limit of ther’ integration range is now tum to a discussion of the form of these layers.

ro- Also, we must use the fact that the integral of the Green’s Let us consider first thg mter_facawayfrom the tip. Ex-
function along the front and back have opposite signs an ressed in terms of our discussion so far, the only necessary

e B o e
cancel to lowest order far’=r,. Those considerations lead Modification is to then=0 saddle point in tha" integral.

to the expression Specifically, if 8— 6¢(r) =9is small(i.e., we are close to the
front), we need to keep an extra term in the argument of the
v_(6) cosine appearing in the Green’s function
N N N oOd"‘/ &G T ! ~ (?af
=g_—(9+—9—)wfo@fo r (7—6,,(“ 10,09 -0 0= 011 ) +o(t=t)=0+ —F(r—r)+elt-t). (17
X[0:(r") = p(T )], (13

The modifiedt’ saddle point occurs at
where

r=ro+DF, r'=ro+ DT '. (14)

Plugging in the expression of the Green'’s function and per-
forming thet’ integral, we obtain

o~ d6; )
w(t—t )——B—W(r—r ), (18

(which must of course be positiveDoing thet’ integral
v_(0)=09_+2(g,.—9_)aD¥*(sF/96), leaves us with an expression of the form
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j dr’ o —(r—r")? ‘9~ \F~D3 (23
47D = 36; 17z 4D| 4 6; =
— 0+ —(r—r’ —|=(r—=r")+ R S
w ar ) ar ¢ ) so that the boundary-layer sizeTinis T '~D?3,
Hence, the leading boundary-layer structure near the tip is
~ 0 , ~ [17]
+ 0+W(r—r) w, (19

r—ro

. , , R 6
where the integral ranges over those values’ofonsistent v=g_+ Dl/gU(F’S_’F’?) _

with the aforementioned positivity constraint brt’. This
expression implies there is a crossover in behavior from the
previous off-interface structure whehis orderD and that
the range of relevant’ variation is also of ordeD. The
overall structure of the field can be shown to bl 6]

(29)

Note that this is exactly the type of relationship that we need.
The tangential derivative discontinuity ofg can be explic-

itly canceled by thed derivative of the second term; if we
iterate the equation perturbatively, we will find that the cur-
vature of the PS solution needs to be corrected by an amount
. _ _ _ of the form D3 (s/D'3) for small arclengths and this
andv is constant on one side, exponentially decaying on th%oundary layer will compensate for the jumpdr/ds across

v=v,s+D0 (/D) (20)

other side, of the interface. This form is necessary to cure thg,o tip. On the other hand, the normal derivatixgor |, is
. y Mo

finite slope discontinuity across the PS interface.

In fact, the width of this interfacial boundary layer is pro-
portional to| #6;/4r |. Since this derivative diverges near the

tip, the boundary layer is much wider than orderin this
region. To analyze this region, we modify E{.7) above,
making explicit the square root dependence#pfwith r’
near the tip

0—0:(r" )+ w(t—t)=0—ar —ro+ w(t—t'), (21

(where 9 is measured from zero angle Letting
r=ro+7,r'=ro+7’, we obtain for theG term

-9 d?'Za\/F

997 \amD(=F+a\F )
_(I‘,’_’FI)Z

4D(~ 9+ a\T")

The crossover from the previous-r, behavior at finited
occurs at

X ex (22

+("é—a\fr’_')/ 3

actually of ordeD ~® and, hence, appears to diverge in the
Pelce-Sun solution.

To summarize, we have shown how to construct a
singularity-free spiral field, starting from the Pelce-Sun solu-
tion, by including the effects of a small diffusion constant.
The fact that this construction goes through without diffi-
culty proves that the Pelce-Sun solution gives the correct
interface shape and concomitant rotation frequency in the
D—0 limit. However, the demonstration that the normal de-
rivative of the field near the tip is actually divergent means
that the stability problem is subtle; since a perturbation to the
interface will in general move the tip in the radial direction,
this induces large field changes which must be explicitly
balanced by interfacial structure on the boundary layer
length scaleD¥3. Work on this stability problem is in
progress.

ACKNOWLEDGMENTS

H.L. is supported in part by NSF Grant No. DMR94-
15460. D.A.K. is supported in part by the Israel Science
Foundation.

[1] For a review, see A. T. Winfree, Chats303(1991).
[2] D. Barkley, et al, Phys. Rev. A42 2489 (1990; D. Barkley,
Phys. Rev. Lett68, 2090(1994.
[3] A. Karma, Phys. Rev. Letb5, 2824(1990.
[4] Z. Nagy-Ungvaraigt al., Chaos3, 15 (1993.
[5] G. Li, et al, Phys. Rev. Lett77, 2105(1996.
[6] I. Mitkov, et al, Phys. Rev. 54, 6065(1996.
[7] D. Kessler and R. Kupferman, Physica(® be publisheg
[8] D. Kessler and H. Levine, Physica 49, 90 (1991).
[9] P. Pelce and J. Sun, Physica4B, 353(199)).
[10] P. C. Fife, inNon-equilibrium Dynamics in Chemical Systeredited
by C. Vidal and A. PacaultSpringer, New York, 1984
[11] J. J. Tyson and J. P. Keener, Physic8P) 327 (1988.
[12] D. Kessler and R. Kupferman, Physicadd, 509 (1996.
[13] D. Kessler,et al, Physica D70, 115(1994).

[14] There is ondunsuccessflilattempt to carry out such an analysis; see

P. Pelce and J. Sun, Physica@3, 273 (1993. More recently[M.

Falcke and H. Levindunpublishedl], it has been shown that the sta-
bility calculation can in fact be done if one makes certain assumptions
regarding the correct boundary conditions on the perturbed interface
near the tip. These assumptions can only be checked by a regularized
theory of the type we are constructing in this paper.

[15] See, e.g., I. S. Gradshteyn and I. M. RyzHhikple of Integrals, Series,
and ProductgAcademic, New York, 1966

[16] One can easily show that E@O) gives rise to a one-sided exponential
boundary layer by changing variables of integration. We should note
that for this boundary layer, the other tem- V'G in Eq. (8) is also
relevant, since the derivative acting on the inner varigbleorder
D) exactly compensates for the explicit extra factorDof

[17] Again a quantitative treatment must include tHe V' G, since there is
no D3 factor and the normal derivative pulls down a factor of
D ~ 2%, which thus compensates for the explicit extra factobdh Eq.

(8).



