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Diffusive boundary layers in the free-surface excitable medium spiral
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Spiral waves are a ubiquitous feature of the nonequilibrium dynamics of a great variety of excitable systems.
In the limit of a large separation in time scale between fast excitation and slow recovery, one can reduce the
spiral problem to one involving the motion of a free surface separating the excited and quiescent phases. In this
work, we study the free-surface problem in the limit of small diffusivity for the slow field variable. Specifi-
cally, we show that a previously found spiral solution in the diffusionless limit can be extended to finite
diffusivity, without significant alteration. This extension involves the creation of a variety of boundary layers
which cure all the undesirable singularities of the aforementioned solution. The implications of our results for
the study of spiral stability are briefly discussed.@S1063-651X~97!50604-0#

PACS number~s!: 82.20.Mj, 82.20.Wt, 87.90.1y
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Understanding the behavior of spiral waves in excita
media remains an important and challenging problem@1#.
From the perspective of numerical simulation, two comp
nent reaction-diffusion models@2,3# have been shown to cap
ture the important features of spiral patterns, in particu
the transition from rigid rotation to meandering and the p
nomenology of the nonlinear meandering state@4,5#. More
recently, simulations@6#, and a numerical stability analysi
@7# based on the free boundary limit@8# ~see below! have
confirmed that the finite thickness of the front~separating the
excited region from the quiescent one! is not crucial for the
meandering behavior. It is therefore of interest to pursue a
lytical techniques~which make use of this free bounda
limit ! in the hope of gaining a more fundamental understa
ing of the nature of this instability.

This work reports progress towards the aforementio
goal of having an analytic theory of spiral waves. Spec
cally, we revisit an approach due to Pelce and Sun@9# who
derived a spiral solution in the case of zero diffusion for t
‘‘controller’’ variable. Their solution exhibits singular be
havior near the spiral ‘‘tip’’~for example, the front curvature
has a discontinuous derivative across the tip point! which
raises questions regarding the validity of the solution and
date has precluded a full stability analysis. Here, we sh
how the inclusion of small but finite diffusivity provides, vi
the introduction of boundary layers, for a regularization
the singular behaviors. This therefore confirms the phys
validity of their construction. The implications of our resul
for a ~future! calculation of spiral stability are discussed
the end.

The free boundary approach starts from the equati
coupling a concentration fieldv(xW ,t) to an interface between
an excited state of the medium~1! and the quiescent stat
~2!. In so-called ‘‘Fife’’-scaled units@wherein lengths, time
and thev field have been rescaled to bring the eikonal eq
tion ~2! into the simple form shown—see Ref.@10##,

]v6/]t 5g62mv61D¹2v, ~1!
551063-651X/97/55~4!/3847~4!/$10.00
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wherem is a positive constant~and where for simplicity we
have assumed equal values of the linear coefficient in
two states!, g1 , g2 are positive, negative constants an
v6 refers to the field in the1,2 regions, respectively. The
field obeys the boundary conditions at the interface@11#

cn1k52v int , ~2!

where cn is the normal velocity,k the curvature, and the
value of v ~as well as its normal derivative! is continuous
across the interface.

This system of equations is not rigorously derivable fro
the original reaction diffusion system

]u/]t 5¹2u1
f ~u,v !

e
, ~3!

]v/]t 5D¹2v1g~u,v ! . ~4!

The reason for this is that replacing the ‘‘propagator’’ fie
equation foru(x,t) by an interfacial boundary condition i
only valid asymptotically ase→0. The coefficientm of the
linear term in Eq.~1! is formally small, of ordere1/3. Hence,
we cannot rigorously keep this linear term without keepi
additional terms of the same order as well. As we have
ready mentioned, however, simulations show that Eqs.~1!
and ~2! do capture the spiral phenomenology of interest,
least for finite diffusivityD. Furthermore, an exact numeric
steady-state solution@12# and subsequent stability analys
@7# directly supports this conclusion. On the other hand,
sults obtained by dropping the linear term and working
smallD seem, at present, to be rather unphysical@13,7#; this
is presumably due to the need to have the spiral tip rema
finite distance away from the origin, which occurs at sm
D only if m is finite. We will therefore adopt Eqs.~1!, ~2! as
our fundamental model and proceed to consider the sm
D limit.

This free boundary problem withD50 was first tackled
by Pelce and Sun@9#. If one assumes a uniformly rotatin
field v(xW ,t)→v(r ,u2vt) one obtains
R3847 © 1997 The American Physical Society
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2v ~]v6/]u! 5g62mv . ~5!

This can be solved by imposing the matching conditio
v1(u f)5v2(u f) and v1(ub)5v2(2p1ub) where u f(r )
andub(r ) are the positions of the interface from quiescent
excited and back to quiescent, as a function of the radiur
~see Fig. 1!. Definingṽ[v/m, g̃6[g6 /m, the solution can
be written as

v6~r ,u!5g̃61A6~r !eu/ṽ , ~6!

where

A2~r !5~ g̃12g̃2!
~e2u f /ṽ2e2ub /ṽ!

12e2p/ṽ
,

A1~r !5A2~r !2~ g̃12g̃2!e2u f /ṽ .

This can then be substituted into the ‘‘eikonal’’ equati
~2! to find the interfacesu f(r ),ub(r ). Near the tip
(u50, r5r 0), smoothness requires 2ub(r )5u f(r )

FIG. 1. A typical spiral, withr 0, u f(r ), ub(r ) indicated.
-
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5aAr2r 0, for some positivea. This condition allows for
the determination of the rotation frequencyv. It is easy to
check that the field valuev takes the valueg̃2 at the tip and
for all r,r 0.

This solution has several unattractive features. Since
interface positionsu f ,b vary asAr2r 0,

]v/]r ; 1/Ar2r 0 ~7!

for all u whenr is close to but above the tip radiusr 0. Also,
]v/]u has a finite jump discontinuity atr5r 0, u50, so that
the derivative ofv along the interface has a jump discon
nuity at the tip where the front and back meet; this leads
the relation~2! to a similar jump for the derivative of the
curvature. In addition, the normal derivative ofv has a finite
jump discontinuity across the interface. These difficult
have had the practical effect of making it impossible to do
full stability analysis of the spiral solution@14# and, in gen-
eral, raise questions concerning whether the introduction
finite diffusivity dramatically alters the conclusions one d
rives via this construction. We now show that, in fact, fin
diffusivity smoothes out this singularities without makin
any quantitatively significant change in the interface sha
and selected rotation frequency.

To proceed, we use an integral equation formulation
the problem@8#. The field v2g̃6 obeys a homogeneous
linear field equation with a fixed discontinuity across t
interface. Following standard manipulations, we can, the
fore, expressv in the rotating frame as

v6~r ,u!5g̃61~ g̃12g̃2!DE ds8S n̂8•¹W 8G2
vr 8

D
n̂u8GD ,

~8!

whereG is the Green’s function for the equation

SD¹W 21v
]

]u
2m DG~r ,u;r 8,u8!5

2d~r2r 8!d~u2u8!

r 8
.

~9!

An explicit representation ofG which will be used below is
G~r ,u;r 8,u8!5E
2`

t dt8

4pD~ t2t8!
expH 2„r 21r 8222rr 8cos@u2u81v~ t2t8!#…

4D~ t2t8!
2m~ t2t8!J . ~10!
un

he

un.

ing
The integral in Eq.~8! is over the entire interface with ar

clength variables8 and n̂8 is the unit normal which points

outward from the excited region;n̂u8 is the component ofn̂

in the direction of theû8 vector. For a given interface
this construction gives a field which obeys the field equat
and the continuity condition; a full solution can then
found in principle by substituting the field value at th
interface into the eikonal condition and iterating the interfa
shape until the equation is satisfied. What we will
instead is evaluate this integral for the Pelce-Sun~PS! inter-
face obtained atD50. We will show that this field is com-
n

e

pletely free from singularities but differs from the Pelce-S
field solution only by terms which are small in the smallD
limit.

Let us first focus on some point away from either t
interface orr5r 0. In this region, we will show how our
formulation reproduces the known results of Pelce and S
SinceG will never be singular, then̂8•¹8G in Eq. ~8! is
order D and can be neglected. The integraln̂u8ds8 can be
replaced by6dr8 ~for front and back, respectively!. Now,
the integrals overr 8 @in Eq. ~8!# and t8 ~in the definition of
G) are dominated by the saddle point contributions com
from
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r 85r1O~AD !

tn85t1~u2u822pn!/v1O~AD ! .

If u.u8, n runs from 1 to`; otherwisen goes from 0 to
`. Doing the Gaussian integrals around these saddle po
leads after some algebra to

v65g̃62~ g̃12g̃2!S (
n

exp~u2u f22pn!/ṽ

2(
n

exp~u2ub22pn!/ṽ D ~11!

where then values in each sum obey the aforemention
rule. In the excited region, for example,u f.u.ub , yielding

v1~u!5g̃12~ g̃12g̃2!eu/ṽFe2u f /ṽ (
n50

`

e22pn/ṽ

2e2ub /ṽ (
n51

`

e22pn/ṽG ~12!

with a similar expression obtainable forv2(u). Doing the
sums, we directly recover the result of Eq.~6! above. For
r,r 0, there are no saddle points and the integral is expon
tially small.

We now wish to understand the departure from the Pe
Sun solution due to finite diffusivity. As we have seen, the
are a number of different regions where the Pelce-Sun s
tion breaks downs and exhibits singular behavior. Th
breakdowns are all cured by boundary layers whose w
vanishes withD. Interestingly enough, as we shall see, t
scaling of the boundary-layer width differs in each regio
We first examine the regionr.r 0, but still away from the
interface, i.e.,u is not close to 0. We saw in Eq.~8! that
dv/dr was singular in this region. Examining our integr
representation forv we see that the saddle point contributio
from the t8 integration is unchanged; however, the Gauss
integral with r 8.r10(AD) cannot be blithely extended t
infinity since the lower limit of ther 8 integration range is
r 0. Also, we must use the fact that the integral of the Gree
function along the front and back have opposite signs
cancel to lowest order forr 8.r 0. Those considerations lea
to the expression

v2~u!

5g̃22~ g̃12g̃2!vr 0ADE
0

`

dr̃ 8
]G

]u8
~ r̃ , r̃ 8;u,u8!uu850

3@u f~ r̃ 8!2ub~ r̃ 8!#, ~13!

where

r5r 01ADr̃ , r 85r 01ADr̃ 8. ~14!

Plugging in the expression of the Green’s function and p
forming thet8 integral, we obtain

v2~u!5g̃212~ g̃12g̃2!aD3/4~]F/]u! ,
ts

d

n-

e-
e
u-
e
th

.

n

’s
d

r-

with

F~u!5(
n
E
0

` dr̃ 8Ar̃ 8

A4pD~2pn2u!/v

3expF2~ r̃ 21 r̃ 8222r̃ r̃ 8!

4~2pn2u!/v
1~u22pn!/ṽ G . ~15!

F can be expressed in terms of the parabolic cylinder fu
tion @15# D n for index n523/2

v2~u!5g̃21
g̃12g̃2

A2
D1/4

]

]u F(
n

dn
m

1/4exp~mdn/2!

3expS 2 r̃ 2

4dn
D D23/2~2 r̃ /Adn!G ~16!

with dn52(2pn2u)/v. This structure represents a boun
ary layer of ~minimum! width (2Duuu/v)1/2. For negative
r̃ , the parabolic cylinder function decays as a Gaussian
v2(0) approachesg̃2 ; for large positiver̃ , D grows and
cancels the exponential factor, leading to the expected
havior v2(u)2g̃2;Ar̃ D1/4;Ar2r 0. Note that the change
in the field itself is negligible as it vanishes in the smallD
limit as D1/4, even though the derivative is of orderD21/4

and approaches infinity.
So, we have shown how integrating over the Pelce-S

interface with the finiteD Green’s function leads to a regu
larization of the infinite slope discontinuity atr5r 0, without
modifying the field. In fact, this lack of field modification i
true everywhere including the interface. This follows fro
the fact that we have already shown that our field constr
tion agrees with the PS field everywhere that is a dista
O~1! away from the interface and the PS fields are conti
ous across the interface. Field derivatives near the interfa
on the other hand, are significantly modified due to the pr
ence of diffusion-induced interfacial boundary layers. W
now turn to a discussion of the form of these layers.

Let us consider first the interfaceaway from the tip. Ex-
pressed in terms of our discussion so far, the only neces
modification is to then50 saddle point in thet8 integral.
Specifically, ifu2u f(r )5 ũ is small~i.e., we are close to the
front!, we need to keep an extra term in the argument of
cosine appearing in the Green’s function

u2u f~r 8!1v~ t2t8!. ũ1
]u f

]r 8
~r2r 8!1v~ t2t8! . ~17!

The modifiedt8 saddle point occurs at

v~ t2t8!52 ũ2
]u f

]r 8
~r2r 8!, ~18!

~which must of course be positive!. Doing the t8 integral
leaves us with an expression of the form
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E dr8

F4pD

v Uũ1
]u f

]r
~r2r 8!UG1/2 expF 2~r2r 8!2

F4Dv U]u f

]r
~r2r 8!1 ũ UG

1S ũ1
]u f

]r 8
~r2r 8! D Y G ṽ , ~19!

where the integral ranges over those values ofr 8 consistent
with the aforementioned positivity constraint ont2t8. This
expression implies there is a crossover in behavior from
previous off-interface structure whenũ is orderD and that
the range of relevantr 8 variation is also of orderD. The
overall structure of thev field can be shown to be@16#

v5vps1D v̂~ ũ/D ! ~20!

andv̂ is constant on one side, exponentially decaying on
other side, of the interface. This form is necessary to cure
finite slope discontinuity across the PS interface.

In fact, the width of this interfacial boundary layer is pr
portional tou ]uf /]r u. Since this derivative diverges near th
tip, the boundary layer is much wider than orderD in this
region. To analyze this region, we modify Eq.~17! above,
making explicit the square root dependence ofu f with r 8
near the tip

u2u f~r 8!1v~ t2t8!. ũ2aAr 82r 01v~ t2t8!, ~21!

~where ũ is measured from zero angle!. Letting
r5r 01 r̃ ,r 85r 01 r̃ 8, we obtain for theG term

2]

]u
E dr̃ 82aAr̃ 8

A4pD~2 ũ1aAr̃ 8!

3expF 2~ r̃2 r̃ 8!2

4D~2 ũ1aAr̃ 8!
1~ ũ2aAr̃ 8!Y ṽG . ~22!

The crossover from the previousr;r 0 behavior at finiteũ
occurs at
ee
e

e
e

ũ;Ar̃;D1/3, ~23!

so that the boundary-layer size inr̃ is r̃ 8;D2/3.
Hence, the leading boundary-layer structure near the ti

@17#

v5g21D1/3v̂S r2r 0
D2/3 ,

u

D1/3D . ~24!

Note that this is exactly the type of relationship that we ne
The tangential derivative discontinuity ofvPS can be explic-
itly canceled by theu derivative of the second term; if we
iterate the equation perturbatively, we will find that the cu
vature of the PS solution needs to be corrected by an am
of the form D1/3f (s/D1/3) for small arclengths and this
boundary layer will compensate for the jump in]k/]s across
the tip. On the other hand, the normal derivative]v/]r ur0 is
actually of orderD21/3 and, hence, appears to diverge in t
Pelce-Sun solution.

To summarize, we have shown how to construct
singularity-free spiral field, starting from the Pelce-Sun so
tion, by including the effects of a small diffusion constan
The fact that this construction goes through without dif
culty proves that the Pelce-Sun solution gives the corr
interface shape and concomitant rotation frequency in
D→0 limit. However, the demonstration that the normal d
rivative of the field near the tip is actually divergent mea
that the stability problem is subtle; since a perturbation to
interface will in general move the tip in the radial directio
this induces large field changes which must be explic
balanced by interfacial structure on the boundary la
length scaleD1/3. Work on this stability problem is in
progress.
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